enso packaging asi: Topics by Science.gov

  • Intrinsic Coupled Ocean-Atmosphere Modes of the Asian Summer Monsoon: A Re-assessment of Monsoon-ENSO Relationships

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Wu, H. T.

    2000-01-01

    Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a

  • Packaging – Materials review

    SciTech Connect

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in manymore » shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified – button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt

  • Packaging – Materials review

    NASA Astrophysics Data System (ADS)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified – button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  • Attitude sensor package

    NASA Technical Reports Server (NTRS)

    Aceti, R.; Trischberger, M.; Underwood, P. J.; Pomilia, A.; Cosi, M.; Boldrini, F.

    1993-01-01

    This paper describes the design, construction, testing, and successful flight of the Attitude Sensor Package. The payload was assembled on a standard HITCHHIKER experiment mounting plate, and made extensive use of the carrier’s power and data handling capabilities. The side mounted HITCHHIKER version was chosen, since this configuration provided the best viewing conditions for the instruments. The combustion was successfully flown on board Space Shuttle Columbia (STS-52), in October 1992. The payload was one of the 14 experiments of the In-Orbit Technology Demonstration Program (Phase 1) of the European Space Agency.

  • Comparative performance evaluation of a new a-Si EPID that exceeds quad high-definition resolution.

    PubMed

    McConnell, Kristen A; Alexandrian, Ara; Papanikolaou, Niko; Stathakis, Sotiri

    2018-01-01

    Electronic portal imaging devices (EPIDs) are an integral part of the radiation oncology workflow for treatment setup verification. Several commercial EPID implementations are currently available, each with varying capabilities. To standardize performance evaluation, Task Group Report 58 (TG-58) and TG-142 outline specific image quality metrics to be measured. A LinaTech Image Viewing System (IVS), with the highest commercially available pixel matrix (2688×2688 pixels), was independently evaluated and compared to an Elekta iViewGT (1024×1024 pixels) and a Varian aSi-1000 (1024×768 pixels) using a PTW EPID QC Phantom. The IVS, iViewGT, and aSi-1000 were each used to acquire 20 images of the PTW QC Phantom. The QC phantom was placed on the couch and aligned at isocenter. The images were exported and analyzed using the epidSoft image quality assurance (QA) software. The reported metrics were signal linearity, isotropy of signal linearity, signal-tonoise ratio (SNR), low contrast resolution, and high-contrast resolution. These values were compared between the three EPID solutions. Computed metrics demonstrated comparable results between the EPID solutions with the IVS outperforming the aSi-1000 and iViewGT in the low and high-contrast resolution analysis. The performance of three commercial EPID solutions have been quantified, evaluated, and compared using results from the PTW QC Phantom. The IVS outperformed the other panels in low and high-contrast resolution, but to fully realize the benefits of the IVS, the selection of the monitor on which to view the high-resolution images is important to prevent down sampling and visual of resolution.

  • Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  • Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    NASA Technical Reports Server (NTRS)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  • Influence of ENSO events on the freshwater discharge pattern at Patos Lagoon, Rio Grande do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Barros, G. P.; Marques, W. C.

    2013-05-01

    The aim of this study is to investigate the influence and importance of ENSO events on the control of the freshwater discharge pattern at Patos Lagoon, in timescales longer than one year. For this study it was used freshwater discharge, water levels and South Oscillation Index (SOI) data sets. The Southern Oscillation Index, or SOI, gives an indication of the development and intensity of El Niño or La Niña events in the Pacific Ocean. Sustained negative values of the SOI greater than -8 often indicate El Niño episodes. Sustained positive values of the SOI greater than +8 are typical of a La Niña episode. Cross wavelet technique is applied to examine the coherence and phase between interannual time-series (South Oscillation Index, freshwater discharge and water levels). Over synoptic time scales, wind action is the most effective forcing in Patos Lagoon’s circulation. However, at longer time scales (over one year), freshwater discharge becomes the most important forcing, controling the water levels, circulation and other processes. At longer time scales, South America is affected by ENSO’s influence. El Niño is the South Oscillation phase where the trade winds are weak, the pressure is low over the eastern Tropical Pacific and high on the west side. The south region of Brazil shows precipitation anomalies associated with the ENSO occurrence. The most significant ENSO events show a high temporal variability, which may occur in near biannual scales (1.5 – 3 years) or in lower frequencies (3 years – 7 years). The freshwater discharge of the main tributaries and water levels in Patos Lagoon are influenced by ENSO on interannual scales (cycles between 3.8 and 6 years). Therefore, El Niño events are associated with high mean values of freshwater discharge and water levels above the mean. On the other hand, La Niña events are associated with low mean values of freshwater discharge and water levels below the mean. These results are consistent with analysis related to

  • The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem “reconstruction from projections” in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  • Japan’s electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the ‘heart and soul’ of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States’ largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  • Changes in El Nino – Southern Oscillation (ENSO) conditions during the Younger Dryas revealed by New Zealand tree-rings.

    NASA Astrophysics Data System (ADS)

    Palmer, Jonathan; Turney, Chris; Cook, Edward; Fenwick, Pavla; Thomas, Zoë; Helle, Gerhard; Jones, Richard; Clement, Amy; Hogg, Alan; Southon, John; Bronk Ramsey, Christopher; Staff, Richard; Muscheler, Raimund; Corrège, Thierry; Hua, Quan

    2017-04-01

    The warming trend at the end of the last glacial was disrupted by rapid cooling clearly identified in Greenland (Greenland Stadial 1 or GS-1) and Europe (Younger Dryas Stadial or YD). This reversal to glacial-like conditions is one of the best known examples of abrupt change but the exact timing and global spatial extent remains uncertain. Whilst the wider Atlantic region has a network of high-resolution proxy records spanning the YD, the Pacific Ocean suffers from a scarcity of sub-decadally resolved sequences. Here we report the results from an investigation into a tree-ring chronology from northern New Zealand aimed at addressing the paucity of data. The conifer tree species kauri (Agathis australis) is known from contemporary studies to be sensitive to regional climate changes. An analysis of a ‘historic’ 452-year kauri chronology confirms a tropical-Pacific teleconnection via the El Niño – Southern Oscillation (ENSO). We then focus our study to a 1010-year subfossil kauri chronology that has been precisely dated by comprehensive radiocarbon dating and contains a striking ring-width downturn between 12,500 to 12,380 cal BP within the YD. Wavelet analysis shows a marked increase in ENSO-like periodicities occurring after the downturn event. Comparison to low- and mid-latitude Pacific records suggests a coherency in the changes to ENSO and Southern Hemisphere westerly airflow during this period. The drivers for this climate event remain unclear but may be related to solar changes that subsequently led to establishment and/or increased expression of ENSO across the mid-latitudes of the Pacific, seemingly independent of the Atlantic and polar regions.

  • High-Resolution Modeling of ENSO-Induced Precipitation in the Tropical Andes: Implications for Proxy Interpretation.

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Karamperidou, C.

    2017-12-01

    Clastic sediment flux into high-elevation Andean lakes is controlled by glacial processes and soil erosion caused by high precipitation events, making these lakes suitable archives of past climate. To wit, sediment records from Laguna Pallcacocha in Ecuador have been interpreted as proxies of ENSO variability, owing to increased precipitation in the greater region during El Niño events. However, the location of the lake’s watershed, the presence of glaciers, and the different impacts of ENSO on precipitation in the eastern vs western Andes have challenged the suitability of the Pallcacocha record as an ENSO proxy. Here, we employ WRF, a high-resolution regional mesoscale weather prediction model, to investigate the circulation dynamics, sources of moisture, and resulting precipitation response in the L. Pallcacocha region during different flavors of El Niño and La Niña events, and in the presence or absence of ice caps. In patricular, we investigate Eastern Pacific (EP), Central Pacific (CP), coastal El Niño, and La Niña events. We validate the model simulations against spatially interpolated station measurements and reanalysis data. We find that during EP events, moisture is primarily advected from the Pacific, whereas during CP events, moisture primarily originates from the Atlantic. More moisture is available during EP events, which implies higher precipitation rates. Furthermore, we find that precipitation during EP events is mostly non-convective in contrast to primarily convective precipitation during CP events. Finally, a synthesis of the sedimentary record and the EP:CP ratio of accumulated precipitation and specific humidity in the L. Pallcacocha region allows us to assess whether past changes in the relative frequency of the two ENSO flavors may have been recorded in paleoclimate archives in this region.

  • Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Chen, Wen; Li, Yanjie

    2017-04-01

    Asymmetric atmospheric responses to ENSO are revisited after dividing it into two types: eastern-Pacific (EP) and central-Pacific (CP) ENSO. The EP ENSO triggers two obvious asymmetric atmospheric teleconnections: One is the Pacific-North American-like teleconnection. Its asymmetry is characterized by weaker amplitudes during the EP La Niña than EP El Niño, which is caused by a much weaker EP La Niña tropical forcing and the resultant weaker extra-tropical vorticity forcing. The other is the Atlantic-Eurasian teleconnection with negative height anomalies in the subtropical Atlantic and Eurasia and positive anomalies in the high-latitude Atlantic and northeast Asia, which appears during the EP La Niña but not during the EP El Niño. The background state plays a vital role in this asymmetry. The EP La Niña-type basic state is more conducive to propagation of the wave rays into the Atlantic-Eurasian region compared to EP El Niño situation. In contrast, the CP ENSO yields an Arctic Oscillation-like teleconnection, presenting an appreciable asymmetry in the subtropical amplitudes that are stronger during the CP El Niño than during the CP La Niña. In this case, the distinct effects of the different background state on the equatorward wave rays are responsible for this asymmetry. Under the CP El Niño-type background state, the equatorward wave rays tend to be reflected at the latitudes where the zonal wind equals zero (U = 0), and then successfully captured by the subtropical westerly jet. However, under the CP La Niña-type background state, the equatorward wave rays disappear at U = 0 latitudes.

  • Anomalously Strong and Rapid Drying of the Tropical Lower Stratosphere in 2016: Connections to Both the QBO and ENSO

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Davis, S. M.; Rosenlof, K. H.; Lambert, A.; Read, W. G.; Hall, E.; Jordan, A. F.

    2017-12-01

    Variations in tropical lower stratospheric water vapor are generally attributable to annual cycles in the Brewer-Dobson circulation and inter-annual phenomenon like the quasi-biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO). Extremes in tropical lower stratospheric water vapor (SWV) occur when these annual and inter-annual changes are constructively superimposed. The atypical progression of the 2015-16 QBO led to a strong and rapid cooling of the tropical lower stratosphere during 2016. From December 2015 to November 2016, monthly tropical mean (15°S-15°N) coldpoint temperature (CPT) anomalies decreased 3.2°C, from 1.1 to -2.1°C. Accordingly, monthly tropical mean SWV anomalies at 83 hPa dropped 1.9 ppm, from 0.85 to -1.05 ppm. This decline in SWV anomalies is equivalent to 40% of the long-term December average tropical abundance of SWV at 83 hPa. The 2016 decreases in tropical anomalies of both CPTs and SWV were not zonally uniform, with average Eastern Hemisphere reductions greater by 2°C and 0.9 ppm (50%), respectively. Since the QBO typically has a zonally uniform effect on tropical CPTs, this implies a zonally non-uniform mechanism like ENSO also influenced CPTs during 2016. The transition of ENSO from strong El Niño to weak La Niña conditions in 2016 would induce this zonal non-uniformity by shifting convective activity from the Eastern Pacific to the Western Pacific and Indian Ocean regions. Evidence indicates the simultaneous cooling of tropical CPTs by both the QBO and ENSO during 2016 rapidly dried the tropical lower stratosphere with anomalous strength, especially in the Eastern Hemisphere.

  • Modulation of the SSTA decadal variation on ENSO events and relationships of SSTA With LOD,SOI, etc

    NASA Astrophysics Data System (ADS)

    Liao, D. C.; Zhou, Y. H.; Liao, X. H.

    2007-01-01

    Interannual and decadal components of the length of day (LOD), Southern Oscillation Index (SOI) and Sea Surface Temperature anomaly (SSTA) in Nino regions are extracted by band-pass filtering, and used for research of the modulation of the SSTA on the ENSO events. Results show that besides the interannual components, the decadal components in SSTA have strong impacts on monitoring and representing of the ENSO events. When the ENSO events are strong, the modulation of the decadal components of the SSTA tends to prolong the life-time of the events and enlarge the extreme anomalies of the SST, while the ENSO events, which are so weak that they can not be detected by the interannual components of the SSTA, can also be detected with the help of the modulation of the SSTA decadal components. The study further draws attention to the relationships of the SSTA interannual and decadal components with those of LOD, SOI, both of the sea level pressure anomalies (SLPA) and the trade wind anomalies (TWA) in tropic Pacific, and also with those of the axial components of the atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). Results of the squared coherence and coherent phases among them reveal close connections with the SSTA and almost all of the parameters mentioned above on the interannual time scales, while on the decadal time scale significant connections are among the SSTA and SOI, SLPA, TWA, ?3w and ?3w+v as well, and slight weaker connections between the SSTA and LOD, ?3pib and ?3bp

  • What do we need to know to predict ENSO? Student-centered learning in a Master course in Climate Physics

    NASA Astrophysics Data System (ADS)

    Lübbecke, Joke; Glessmer, Mirjam

    2017-04-01

    An important learning outcome of a Master of Sciences program is to empower students to understand which information they need, how they can gain the required knowledge and skills, and how to apply those to solve a given scientific problem. In designing a class on the El-Nino-Southern-Oscillation (ENSO) for students in the Climate Physics program at Kiel University, Germany, we have implemented various active learning strategies to meet this goal. The course is guided by an overarching question, embedded in a short story: What would we need to know to successfully predict ENSO? The students identify desired learning outcomes and collaboratively construct a concept map which then serves as a structure for the 12 weeks of the course, where each individual topic is situated in the larger context of the students’ own concept map. Each learning outcome of the course is therefore directly motivated by a need to know expressed by the students themselves. During each session, students are actively involved in the learning process. They work individually or in small groups, for example testing different index definitions, analyzing data sets, setting up simple numerical models and planning and constructing hands-on experiments to demonstrate physical processes involved in the formation of El Niño events. The instructor’s role is to provide the necessary background information and guide the students where it is needed. Insights are shared between groups as students present their findings to each other and combine the information, for example by cooperatively constructing a world map displaying the impacts of ENSO or by exchanging experts on different ENSO oscillator theories between groups. Development of this course was supported by the PerLe Fonds for teaching innovations at Kiel University. A preliminary evaluation has been very positive with students in particular appreciating their active involvement in the class.

  • Variability modes of precipitation along a Central Mediterranean area and their relations with ENSO, NAO, and other climatic patterns

    NASA Astrophysics Data System (ADS)

    Kalimeris, Anastasios; Ranieri, Ezio; Founda, Dimitra; Norrant, Caroline

    2017-12-01

    This study analyses a century-long set of precipitation time series in the Central Mediterranean (encompassing the Greek Ionian and the Italian Puglia regions) and investigates the statistically significant modes of the interannual precipitation variability using efficient methods of spectral decomposition. The statistical relations and the possible physical couplings between the detected modes and the global or hemispheric patterns of climatic variability (the El Niño Southern Oscillation or ENSO, the North Atlantic Oscillation or NAO, the East Atlantic or EA, the Scandinavian or SCAND, and others) were examined in the time-frequency domain and low-order synchronization events were sought. Significant modes of precipitation variability were detected in the Taranto Gulf and the southern part of the Greek Ionian region at the sub-decadal scales (mostly driven by the SCAND pattern) and particularly at the decadal and quasi-decadal scales, where strong relations found with the ENSO activity (under complex implications of EA and NAO) prior to the 1930s or after the early-1970s. The precipitation variations in the Adriatic stations of Puglia are dominated by significant bi-decadal modes which found to be coherent with the ENSO activity and also weakly related with the Atlantic Ocean sea surface temperature intrinsic variability. Additionally, important discontinuities characterize the evolution of precipitation in certain stations of the Taranto Gulf and the Greek Ionian region during the early-1960s and particularly during the early-1970s, followed by significant reductions in the mean annual precipitation. These discontinuities seem to be associated with regional effects of NAO and SCAND, probably combined with the impact of the 1970s climatic shift in the Pacific and the ENSO variability.

  • ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.

    2015-12-01

    The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on

  • ENSO-cave drip water hydrochemical relationship: a 7-year dataset from south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Tadros, Carol V.; Treble, Pauline C.; Baker, Andy; Fairchild, Ian; Hankin, Stuart; Roach, Regina; Markowska, Monika; McDonald, Janece

    2016-11-01

    Speleothems (cave deposits), used for palaeoenvironmental reconstructions, are deposited from cave drip water. Differentiating climate and karst processes within a drip-water signal is fundamental for the correct identification of palaeoenvironmental proxies and ultimately their interpretation within speleothem records. We investigate the potential use of trace element and stable oxygen-isotope (δ18O) variations in cave drip water as palaeorainfall proxies in an Australian alpine karst site. This paper presents the first extensive hydrochemical and δ18O dataset from Harrie Wood Cave, in the Snowy Mountains, south-eastern (SE) Australia. Using a 7-year long rainfall δ18O and drip-water Ca, Cl, Mg / Ca, Sr / Ca and δ18O datasets from three drip sites, we determined that the processes of mixing, dilution, flow path change, carbonate mineral dissolution and prior calcite precipitation (PCP) accounted for the observed variations in the drip-water geochemical composition. We identify that the three monitored drip sites are fed by fracture flow from a well-mixed epikarst storage reservoir, supplied by variable concentrations of dissolved ions from soil and bedrock dissolution. We constrained the influence of multiple processes and controls on drip-water composition in a region dominated by El Niño-Southern Oscillation (ENSO). During the El Niño and dry periods, enhanced PCP, a flow path change and dissolution due to increased soil CO2 production occurred in response to warmer than average temperatures in contrast to the La Niña phase, where dilution dominated and reduced PCP were observed. We present a conceptual model, illustrating the key processes impacting the drip-water chemistry. We identified a robust relationship between ENSO and drip-water trace element concentrations and propose that variations in speleothem Mg / Ca and Sr / Ca ratios may be interpreted to reflect palaeorainfall conditions. These findings inform palaeorainfall reconstruction from

  • Selection of optimal complexity for ENSO-EMR model by minimum description length principle

    NASA Astrophysics Data System (ADS)

    Loskutov, E. M.; Mukhin, D.; Mukhina, A.; Gavrilov, A.; Kondrashov, D. A.; Feigin, A. M.

    2012-12-01

    One of the main problems arising in modeling of data taken from natural system is finding a phase space suitable for construction of the evolution operator model. Since we usually deal with strongly high-dimensional behavior, we are forced to construct a model working in some projection of system phase space corresponding to time scales of interest. Selection of optimal projection is non-trivial problem since there are many ways to reconstruct phase variables from given time series, especially in the case of a spatio-temporal data field. Actually, finding optimal projection is significant part of model selection, because, on the one hand, the transformation of data to some phase variables vector can be considered as a required component of the model. On the other hand, such an optimization of a phase space makes sense only in relation to the parametrization of the model we use, i.e. representation of evolution operator, so we should find an optimal structure of the model together with phase variables vector. In this paper we propose to use principle of minimal description length (Molkov et al., 2009) for selection models of optimal complexity. The proposed method is applied to optimization of Empirical Model Reduction (EMR) of ENSO phenomenon (Kravtsov et al. 2005, Kondrashov et. al., 2005). This model operates within a subset of leading EOFs constructed from spatio-temporal field of SST in Equatorial Pacific, and has a form of multi-level stochastic differential equations (SDE) with polynomial parameterization of the right-hand side. Optimal values for both the number of EOF, the order of polynomial and number of levels are estimated from the Equatorial Pacific SST dataset. References: Ya. Molkov, D. Mukhin, E. Loskutov, G. Fidelin and A. Feigin, Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series, Phys. Rev. E, Vol. 80, P 046207, 2009 Kravtsov S, Kondrashov D, Ghil M, 2005: Multilevel regression

  • Source