How Perturbing Ocean Floor Disturbs Tsunami Waves

NASA Astrophysics Data System (ADS)

Salaree, A.; Okal, E.

2017-12-01

Bathymetry maps play, perhaps the most crucial role in optimal tsunami simulations. Regardless of the simulation method, on one hand, it is desirable to include every detailed bathymetry feature in the simulation grids in order to predict tsunami amplitudes as accurately as possible, but on the other hand, large grids result in long simulation times. It is therefore, of interest to investigate a “sufficiency” level – if any – for the amount of details in bathymetry grids needed to reconstruct the most important features in tsunami simulations, as obtained from the actual bathymetry. In this context, we use a spherical harmonics series approach to decompose the bathymetry of the Pacific ocean into its components down to a resolution of 4 degrees (l=100) and create bathymetry grids by accumulating the resulting terms. We then use these grids to simulate the tsunami behavior from pure thrust events around the Pacific through the MOST algorithm (e.g. Titov & Synolakis, 1995; Titov & Synolakis, 1998). Our preliminary results reveal that one would only need to consider the sum of the first 40 coefficients (equivalent to a resolution of 1000 km) to reproduce the main components of the “real” results. This would result in simpler simulations, and potentially allowing for more efficient tsunami warning algorithms.

NASA Astrophysics Data System (ADS)

Gailler, Audrey; Hébert, Hélène; Loevenbruck, Anne

2013-04-01

Improvements in the availability of sea-level observations and advances in numerical modeling techniques are increasing the potential for tsunami warnings to be based on numerical model forecasts. Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response on the scale of an individual harbor. In fact, when facing the problem of the interaction of the tsunami wavefield with a shoreline, any numerical simulation must be performed over an increasingly fine grid, which in turn mandates a reduced time step, and the use of a fully non-linear code. Such calculations become then prohibitively time-consuming, which is clearly unacceptable in the framework of real-time warning. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami wave heights in high seas, and tsunami warning maps at western Mediterranean and NE Atlantic basins scale. We present here a preliminary work that performs quick estimates of the inundation at individual harbors from these deep wave heights simulations. The method involves an empirical correction relation derived from Green’s law, expressing conservation of wave energy flux to extend the gridded wave field into the harbor with respect to the nearby deep-water grid node. The main limitation of this method is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical

Wave Propagation in Bimodular Geomaterials

NASA Astrophysics Data System (ADS)

Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim

2016-04-01

Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity – a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users’ Conference.

A rapid calculation system for tsunami propagation in Japan by using the AQUA-MT/CMT solutions

NASA Astrophysics Data System (ADS)

Nakamura, T.; Suzuki, W.; Yamamoto, N.; Kimura, H.; Takahashi, N.

2017-12-01

We developed a rapid calculation system of geodetic deformations and tsunami propagation in and around Japan. The system automatically conducts their forward calculations by using point source parameters estimated by the AQUA system (Matsumura et al., 2006), which analyze magnitude, hypocenter, and moment tensors for an event occurring in Japan in 3 minutes of the origin time at the earliest. An optimized calculation code developed by Nakamura and Baba (2016) is employed for the calculations on our computer server with 12 core processors of Intel Xeon 2.60 GHz. Assuming a homogeneous fault slip in the single fault plane as the source fault, the developed system calculates each geodetic deformation and tsunami propagation by numerically solving the 2D linear long-wave equations for the grid interval of 1 arc-min from two fault orientations simultaneously; i.e., one fault and its conjugate fault plane. Because fault models based on moment tensor analyses of event data are used, the system appropriately evaluate tsunami propagation even for unexpected events such as normal faulting in the subduction zone, which differs with the evaluation of tsunami arrivals and heights from a pre-calculated database by using fault models assuming typical types of faulting in anticipated source areas (e.g., Tatehata, 1998; Titov et al., 2005; Yamamoto et al., 2016). By the complete automation from event detection to output graphical figures, the calculation results can be available via e-mail and web site in 4 minutes of the origin time at the earliest. For moderate-sized events such as M5 to 6 events, the system helps us to rapidly investigate whether amplitudes of tsunamis at nearshore and offshore stations exceed a noise level or not, and easily identify actual tsunamis at the stations by comparing with obtained synthetic waveforms. In the case of using source models investigated from GNSS data, such evaluations may be difficult because of the low resolution of sources due to a low

NASA Astrophysics Data System (ADS)

Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.

2013-12-01

An important issue that vexes tsunami warning centers (TWCs) is when to cancel a tsunami warning once it is in effect. Emergency managers often face a variety of pressures to allow the public to resume their normal activities, but allowing coastal populations to return too quickly can put them at risk. A TWC must, therefore, exercise caution when cancelling a warning. Kim and Whitmore (2013) show that in many cases a TWC can use the decay of tsunami oscillations in a harbor to forecast when its amplitudes will fall to safe levels. This technique should prove reasonably robust for local tsunamis (those that are potentially dangerous within only 100 km of their source region) and for regional tsunamis (whose danger is limited to within 1000km of the source region) as well. For ocean-crossing destructive tsunamis such as the 11 March 2011 Tohoku tsunami, however, this technique may be inadequate. When a tsunami propagates across the ocean basin, it will encounter topographic obstacles such as seamount chains or coastlines, resulting in coherent reflections that can propagate great distances. When these reflections reach previously-impacted coastlines, they can recharge decaying tsunami oscillations and make them hazardous again. Warning center scientists should forecast sea-level records for 24 hours beyond the initial tsunami arrival in order to observe any potential reflections that may pose a hazard. Animations are a convenient way to visualize reflections and gain a broad geographic overview of their impacts. The Pacific Tsunami Warning Center has developed tools based on tsunami simulations using the RIFT tsunami forecast model. RIFT is a linear, parallelized numerical tsunami propagation model that runs very efficiently on a multi-CPU system (Wang et al, 2012). It can simulate 30-hours of tsunami wave propagation in the Pacific Ocean at 4 arc minute resolution in approximately 6 minutes of real time on a 12-CPU system. Constructing a 30-hour animation using 1

Tsunami Waves and Tsunami-Induced Natural Oscillations Determined by HF Radar in Ise Bay, Japan

NASA Astrophysics Data System (ADS)

Toguchi, Y.; Fujii, S.; Hinata, H.

2018-04-01

Tsunami waves and the subsequent natural oscillations generated by the 2011 Tohoku earthquake were observed by two high-frequency (HF) radars and four tidal gauge records in Ise Bay. The radial velocity components of both records increased abruptly at approximately 17:00 (JST) and continued for more than 24 h. This indicated that natural oscillations followed the tsunami in Ise Bay. The spectral analyses showed that the tsunami wave arrivals had periods of 16-19, 30-40, 60-90, and 120-140 min. The three longest periods were remarkably amplified. Time-frequency analysis also showed the energy increase and duration of these periods. We used an Empirical Orthogonal Function (EOF) to analyze the total velocity of the currents to find the underlying oscillation patterns in the three longest periods. To verify the physical properties of the EOF analysis results, we calculated the oscillation modes in Ise Bay using a numerical model proposed by Loomis. The results of EOF analysis showed that the oscillation modes of 120-140 and 60-90 min period bands were distributed widely, whereas the oscillation mode of the 30-40 min period band was distributed locally. The EOF spatial patterns of each period showed good agreement with the eigenmodes calculated by the method of Loomis (1975). Thus, the HF radars were capable of observing the tsunami arrival and the subsequent oscillations.

High-Performance Computing and Visualization of Tsunamis and Wind-Driven Waves

NASA Astrophysics Data System (ADS)

Liu, Y. S.; Zhang, H.; Yuen, D. A.; Wang, M.

2005-12-01

The Sumatran earthquake and the tsunami waves produced have awakened great scientific interest in wave-propagation over undulated bottom topography and along complicated coastlines. The recent hurricane Katrina has also called our attention to shorter period waves near the coast. Analytical approximations are valid over long wavelengths in the far field. For near field regions with complex geography and other complications, such as islands and harbors, numerical simulations must be employed to obtain accurate predictions in time and space. Nowadays using 10**7 to 10**8 grid points become quite routine with massively parallel computers and large RAM and disk memories. Besides tsunamis, river discharges from upstream events and waves driven by hurricanes are also of societal relevance, especially in central China and now also in U.S.A. Using automatic grid generation methods, we have devised a finite-element based code, for the three stages which culminates with the use of the augmented Lagrangian method for the run-up process, as well as the Arbitrary Lagrange- Euler Configuration method to tackle the free surface problem near the seashore. This formulation allows for the wave surface to be self-consistently determined within a linearized framework and is computationally very fast. Our continuous efforts are focussed on seeking novel algorithms and state of art techniques, in order to unravel the mysteries associated with tsunami wave propagation and wind-driven waves in 3-D. We have cast the Navier-Stokes equations within the framework of a compressible model with an equation of state for sea-water. Our formulation allows the tracking and simulation of three stages , principally the formation, propagation and run-up stages of tsunami and waves coming ashore. The sequential version of this code can run on a workstation with 4 Gbyte memory less than 2 minutes per time step for one million grid points. This code has also been parallelized with MPI-2 and has good

NASA Astrophysics Data System (ADS)

Ren, Luchuan

2015-04-01

A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake’s magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there

Modeling Tsunami Wave Generation Using a Two-layer Granular Landslide Model

NASA Astrophysics Data System (ADS)

Ma, G.; Kirby, J. T., Jr.; Shi, F.; Grilli, S. T.; Hsu, T. J.

2016-12-01

Tsunamis can be generated by subaerial or submarine landslides in reservoirs, lakes, fjords, bays and oceans. Compared to seismogenic tsunamis, landslide or submarine mass failure (SMF) tsunamis are normally characterized by relatively shorter wave lengths and stronger wave dispersion, and potentially may generate large wave amplitudes locally and high run-up along adjacent coastlines. Due to a complex interplay between the landslide and tsunami waves, accurate simulation of landslide motion as well as tsunami generation is a challenging task. We develop and test a new two-layer model for granular landslide motion and tsunami wave generation. The landslide is described as a saturated granular flow, accounting for intergranular stresses governed by Coulomb friction. Tsunami wave generation is simulated by the three-dimensional non-hydrostatic wave model NHWAVE, which is capable of capturing wave dispersion efficiently using a small number of discretized vertical levels. Depth-averaged governing equations for the granular landslide are derived in a slope-oriented coordinate system, taking into account the dynamic interaction between the lower-layer granular landslide and upper-layer water motion. The model is tested against laboratory experiments on impulsive wave generation by subaerial granular landslides. Model results illustrate a complex interplay between the granular landslide and tsunami waves, and they reasonably predict not only the tsunami wave generation but also the granular landslide motion from initiation to deposition.

NASA Astrophysics Data System (ADS)

Mokrani, C.; Catalan, P. A.; Cienfuegos, R.; Arikawa, T.

2016-02-01

A large part of coasts around the world are affected by tsunami impacts, which supposes a challenge when designing coastal protection structures. Numerical models provide predictions of tsunami-induced loads and there time evolution, which can be used to improve sizing rules of coastal structures. However, the numerical assessment of impact loads is an hard stake. Indeed, recent experimental studies have shown that pressure dynamics generated during tsunami impacts are highly sensitive to the incident local shape of the tsunami. Therefore, high numerical resolutions and very accurate models are required to model all stages during which the tsunami shape is modified before the impact. Given the large distances involved in tsunami events, this can be disregarded in favor of computing time. The Port and Airport Research Institute (PARI) has recently developed a three-way coupled model which allows to accurately model the incident tsunami shape while maintaining reasonable computational time. This coupling approach uses three models used in nested grids (cf. Figure 1). The first one (STOC-ML) solves Nonlinear Shallow Water Equations with hydrostatic pressure. It is used to model the tsunami propagation off the coast. The second one (STOC-IC) is a 3D non-hydrostatic model, on which the free-surface position is estimated through the integrated continuity equation. It has shown to accurately describe dispersive and weakly linear effects occurring at the coast vicinity. The third model (CADMAS-SURF) solves fully three-dimensional Navier-Stokes equations and use a VOF method. Highly nonlinear, dispersive effects and wave breaking processes can be included at the wave scale and therefore, a very accurate description of the incident tsunami is provided. Each model have been separately validated from analytical and/or experimental data. The present objective is to highlight recent advances in Coastal Ocean modeling for tsunami modeling and loads prediction by applying this

New Offshore Approach to Reduce Impact of Tsunami Waves

NASA Astrophysics Data System (ADS)

Anant Chatorikar, Kaustubh

2016-07-01

The world is facing an increasing frequency and intensity of natural disaster that has devastating impacts on society. As per International Strategy for Disaster Reduction (ISDR), it has been observed that over five million people were killed or affected in last 10 years and huge amount of economic losses occurred due to natural disaster. The 2011 tsunami in Japan showed a tremendous setback to existing technology of tsunami protection. More than 25,000 lives have been lost, Apart from that the damage to the nuclear power stations has severely affected the nearby populace and marine life. After the 2004 tsunami, world’s effort has been concentrated on early warning and effective mitigation plans to defend against tsunami. It is anybody’s guess as to what would have happened if such natural calamity specifically tsunami of such magnitude strikes our nation as country has already suffered from it in 2004 and seen its disastrous effects. But the point is what if such calamity strikes the mega cities like Chennai, Mumbai and Kolkata again where there is extensive human habitation and conventional warning systems and mitigation methods are not effective when it comes to huge population of these cities, destruction caused by it will be worse than nuclear weapon strike as there is also very high possibility of deaths due to stampede. This paper talks about an idea inspired from daily routine and its relation with fundamental physics as well as method of its deployment is discussed. According to this idea when wave will strike the coast, aim is not to stop it but to reduce its impact within the permissible impact limits of existing infrastructure by converting it into foam wave with help of surfactants, thereby saving human lives as well as complications of Mitigation.

Propagation of a fluidization – combustion wave

Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

1994-05-01

A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

Generation of realistic tsunami waves using a bottom-tilting wave maker

NASA Astrophysics Data System (ADS)

Park, Yong Sung; Hwang, Jin Hwan

2016-11-01

Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.

NASA Technical Reports Server (NTRS)

Bourgeois, Joanne; Wiberg, Patricia L.

1988-01-01

Impulse-generated waves (tsunamis) may be produced, at varying scales and global recurrence intervals (RI), by several processes. Meteorite-water impacts will produce tsunamis, and asteroid-scale impacts with associated mega-tsunamis may occur. A bolide-water impact would undoubtedly produce a major tsunami, whose sedimentological effects should be recognizable. Even a bolide-land impact might trigger major submarine landslides and thus tsunamis. In all posulated scenarios for the K/T boundary event, then, tsunamis are expected, and where to look for them must be determined, and how to distinguish deposits from different tsunamis. Also, because tsunamis decrease in height as they move away from their source, the proximal effects will differ by perhaps orders of magnitude from distal effects. Data on the characteristics of tsunamis at their origin are scarce. Some observations exist for tsunamis generated by thermonuclear explosions and for seismogenic tsunamis, and experimental work was conducted on impact-generated tsunamis. All tsunamis of interest have wave-lengths of 0(100) km and thus behave as shallow-water waves in all ocean depths. Typical wave periods are 0(10 to 100) minutes. The effect of these tsunamis can be estimated in the marine and coastal realm by calculating boundary shear stresses (expressed as U*, the shear velocity). An event layer at the K/T boundary in Texas occurs in mid-shelf muds. Only a large, long-period wave with a wave height of 0(50) m, is deemed sufficient to have produced this layer. Such wave heights imply a nearby volcanic explosion on the scale of Krakatau or larger, or a nearby submarine landslide also of great size, or a bolide-water impact in the ocean.

NASA Astrophysics Data System (ADS)

Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

2016-12-01

Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

Fast algorithm for calculation of the moving tsunami wave height

NASA Astrophysics Data System (ADS)

Krivorotko, Olga; Kabanikhin, Sergey

2014-05-01

One of the most urgent problems of mathematical tsunami modeling is estimation of a tsunami wave height while a wave approaches to the coastal zone. There are two methods for solving this problem, namely, Airy-Green formula in one-dimensional case ° — S(x) = S(0) 4 H(0)/H (x), and numerical solution of an initial-boundary value problem for linear shallow water equations ( { ηtt = div (gH (x,y)gradη), (x,y,t) ∈ ΩT := Ω ×(0,T); ( η|t=0 = q(x,y), ηt|t=0 = 0, (x,y ) ∈ Ω := (0,Lx)× (0,Ly ); (1) η|δΩT = 0. Here η(x,y,t) is the free water surface vertical displacement, H(x,y) is the depth at point (x,y), q(x,y) is the initial amplitude of a tsunami wave, S(x) is a moving tsunami wave height at point x. The main difficulty problem of tsunami modeling is a very big size of the computational domain ΩT. The calculation of the function η(x,y,t) of three variables in ΩT requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height which is based on kinematic-type approach and analytical representation of fundamental solution (2). The wave is supposed to be generated by the seismic fault of the bottom η(x,y,0) = g(y) ·θ(x), where θ(x) is a Heaviside theta-function. Let τ(x,y) be a solution of the eikonal equation 1 τ2x +τ2y = –, gH (x,y) satisfying initial conditions τ(0,y) = 0 and τx(0,y) = (gH (0,y))-1/2. Introducing new variables and new functions: ° — z = τ(x,y), u(z,y,t) = ηt(x,y,t), b(z,y) = gH(x,y). We obtain an initial-boundary value problem in new variables from (1) ( 2 2 (2 bz- ) { utt = uzz + b uyy + 2b τyuzy + b(τxx + τyy) + 2b + 2bbyτy uz+ ( +2b(bzτy + by)uy, z,y- >2 0,t > 0,2 -1/2 u|t 0,t > 0. Then after some mathematical transformation we get the structure of the function u(x,y,t) in the form u(z,y,t) = S(z,y)·θ(t – z) + ˜u(z,y,t). (2) Here Å©(z,y,t) is a smooth function, S(z,y) is the solution of the problem: { S + b2τ S + (1b2(τ +

NASA Astrophysics Data System (ADS)

Hammitzsch, M.; Spazier, J.; Reißland, S.

2014-12-01

Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects – ‘German Indonesian Tsunami Early Warning System’ (GITEWS), ‘Distant Early Warning System’ (DEWS), and ‘Collaborative, Complex, and Critical Decision-Support in Evolving Crises’ (TRIDEC) – new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named ‘TRIDEC Cloud’, merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the

NASA Astrophysics Data System (ADS)

Wang, N.; Tang, L.; Titov, V.; Newman, J. C.; Dong, S.; Wei, Y.

2013-12-01

The tragedies of the 2004 Indian Ocean and 2011 Japan tsunamis have increased awareness of tsunami hazards for many nations, including China. The low land level and high population density of China’s coastal areas place it at high risk for tsunami hazards. Recent research (Komatsubara and Fujiwara, 2007) highlighted concerns of a magnitude 9.0 earthquake on the Nankai trench, which may affect China’s coasts not only in South China Sea, but also in the East Sea and Yellow Sea. Here we present our work in progress towards developing a global tsunami propagation database that can be used for hazard assessments by many countries. The propagation scenarios are computed by using NOAA’s MOST numerical model. Each scenario represents a typical Mw 7.5 earthquake with predefined earthquake parameters (Gica et al., 2008). The model grid was interpolated from ETOPO1 at 4 arc-min resolution, covering -80° to72°N and 0 to 360°E. We use this database for preliminary tsunami hazard assessment along China’s coastlines.

Wave Propagation inside Random Media

NASA Astrophysics Data System (ADS)

Cheng, Xiaojun

=-x/l where l is the transport mean free path. The result does not depend on the sample length, which is counterintuitive yet remarkably simple. More supprisingly, the linear fall-off of energy profile holds for totally disordered random 1D layered samples in simulations where the LDOS is uniform as well as for single mode random waveguide experiments and 1D nearly periodic samples where the LDOS is suppressed in the middle of the sample. The generalization of the transmission matrix to the interior of quasi-1D random samples, which is defined as the field matrix, and its eigenvalues statistics are also discussed. The maximum energy deposition at a location is not the intensity of the first transmission eigenchannel but the eigenvalue of the first energy density eigenchannels at that cross section, which can be much greater than the average value. The contrast, which is the ratio of the intensity at the focused point to the background intensity, in optimal focusing is determined by the participation number of the energy density eigenvalues and its inverse gives the variance of the energy density at that cross section in a single configuration. We have also studied topological states in photonic structures. We have demonstrated robust propagation of electromagnetic waves along reconfigurable pathways within a topological photonic metacrystal. Since the wave is confined within the domain wall, which is the boundary between two distinct topological insulating systems, we can freely steer the wave by reconstructing the photonic structure. Other topics, such as speckle pattern evolutions and the effects of boundary conditions on the statistics of transmission eigenvalues and energy profiles are also discussed.

Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

2015-10-08

Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6…ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input…for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon